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Abstract—The hydrodynamic stability considered here is formulated in terms of a two-point boundary-
value, eigenvalue problem derived by assuming periodic small disturbances superimposed on a time-
dependent base-state which is the quiescent growing conduction layer resulting from a step in surface heat
flux. Since the local heat flux field is similar, a dimensionless similarity parameter arises. The assumed
disturbance form is guided by previous stability investigations. The stiff equations are integrated to obtain
the neutral stability curve with an extreme at Gr = 202.19, « = 1.151, and C, = 0.0. Although the postulated
disturbance form allowed for time-dependent periodic oscillation, the computed disturbance wave velocity
is found to be identically zero for the entire curve. Thus, it is presumed that the assumed oscillatory
component of the perturbation is not time dependent, during the instability onset, at least for the calculated
range (202 < Gr < 1000). Thus, unlike analyses for steady base-states, these results prohibit ‘tracking’
disturbances along constant frequency paths. Nevertheless, experimental results suggest that the wave
number should decrease with increasing Gr as the neutral curve is crossed by the perturbation.

1. INTRODUCTION

AS CONSIDERED here, the onset of instability is the start
of the transition process from a quiescent conduction
state to convective motion. This transition occurs
when the motion-causing buoyancy forces which are
produced by thermally generated density differences
exceed the restraining viscous forces. This imbalance
of forces, which is driven by heat generation at the
surface, makes available an increasing amount of
energy to naturally occurring disturbances as the con-
duction layer thickens. Results from this analysis have
several implications. Transient convective flows inside
heat exchangers during start-ups, air movements due
to specific geo-atmospheric conditions, and behavior
of thermally driven currents in large water bodies, are
some of the areas where the results of this analysis
can be used to a certain extent.

Phenomena associated with heated horizontal fluid
were formulated by Howard [1] in a theory explaining
the generation of thermals as well as the quantita-
tive prediction for the temperature field, the Nusselt
number and the duration of the preceding conductive
phase. Sparrow ef al. [2] experimentally validated the
predictions of Howard by observing the generation
frequency of thermals. The time of onset of instability
was determined in both investigations but, according
to Howard the conduction layer stability problem was
not treated because of the time-dependent basic state

and because of the fact that the stability of a boundary
layer at the bottom of a semi-infinite region is different
from the ordinary case of a finite layer.

Foster [3] analyzed the stability of a fluid layer
cooled uniformly from above. The theoretical model
was simplified to overcome the difficulties that arise
while solving for large Rayleigh numbers. The stab-
ility equations were formulated based on infinitesimal
disturbances, a method commonly used in stability
analysis of convective flows. The method considers
the manner in which disturbances behave in the flow,
in accordance with the appropriate conservation
equations. In conventional stability theory the cri-
terion for onset of instability is determined by finding
the marginal state, that is, the state where infinitesimal
disturbances just start to grow. Fourier series were
used to solve the equations which prohibit the solving
of the problem at large Rayleigh numbers or when the
flow is assumed to be two-dimensional.

The infinitesimal disturbance method has been used
successfully in the past to mathematically model other
flows during transition. For example, it has been used
in many of the studies related to hydrodynamic stab-
ility of flows in the neighborhood of vertical, hori-
zontal, or inclined (heated or cooled) flat plates. Its
use has been exemplified by Schlichting [4] and others.
Consequently, this method was selected for the pres-
ent study in order to mathematically formulate the
hydrodynamic stability problem of a growing one-
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NOMENCLATURE
C, +iC; Greek symbols
amplification or damping ratio o  disturbance wave number, 27/4
disturbance wave propagation velocity, o, thermal diffusivity, k/pC,
27 flo p.  thermal expansion coefficient
disturbance frequency ) characteristic length, 2,/ (a,7)
relative error, ¢'(0)/drax n similarity variable, y/é
gravity acceleration 8  temperature difference, T— T,
Grashof number, gf,6.6°/v* 6.  characteristic temperature, 2¢",/ (o, 7)/k\/7
imaginary unit A perturbation wavelength
fluid thermal conductivity v dynamic viscosity
local static pressure p  fluid density
Prandtl number, v/a, T time
surface heat flux ¢  stream function disturbance magnitude
temperature disturbance magnitude Y disturbance stream function
local temperature of fluid @  vorticity, du/dy — 0v/Ox.
surface temperature
temperature at 5 = #,,
fluid velocity in the horizontal x-direction
(parallel to the surface) Superscripts

characteristic velocity, 06/0t
velocity in the vertical y-direction.

average quantity
dimensional quantity of fluctuation.

(@)

y

®)

FiG. 1. The coordinate systems : (a) plate facing up ¢ = +1; (b) plate facing downe = —1.
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dimensional conduction layer in an extensive fluid
above a suddenly heated horizontal flat plate illus-
trated by the top part of Fig. 1 where the shaded area
represents the heat generating surface. This investi-
gation is restricted to the task of determining theor-
etically whether the disturbance is amplified or de-
cayed for a given mean flow of an incompressible fluid
(water). The resulting stability equations obtained
here are limited only to the onset of instability.

2. GOVERNING EQUATIONS

The governing equations are the Cartesian form of
the two-dimensional continuity, momentum, and
energy equations which, if the Boussinesq approxi-
mations are made, and if viscous dissipation, motion
pressure, and volumetric energy generation effects are
neglected, are

6u+@
ox Oy

au+ %4_ @ = a_p+ i’i_}_a_Z.lf (2)
dt U(J’y T T M T 7
o, o\ o

P\ot ¥ ox U@y T oy

v o
+“(a 3 +(7y >+8y/3:9 3)

=0 )

08 06 06 %0 3%
(Z5+29) @

e N T
where

+ 1 for heated surface facing upward

¢ — 1 for heated surface facing downward.

The case where ¢ = —1, for heated surface facing
downward, represents a fluid heated uniformly from
above, a naturally stable case. Conventionally, the x
derivative of the y momentum equation is subtracted
from the y derivative of the x momentum equation to

eliminate the pressure terms. The result for a heated
surface facing upward (¢ = 1) is

oo ), oo o

dt\dy Ox “ox dy 0ox
sl (W_d\_ [& (o &
U@y dy ox =V ax? dy ox

9% [ou v o0

The conventional vorticity function, w, is
ou Ov
=5 ©)
dy ox

The definition of @ expressed in equation (6) reduces
equation (5) to
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dw o w o o o0 ;
E“‘&‘L"@: ox? +6y +gﬂ'8x M
Infinitesimal disturbances, 4, 4, & and §, are super-
imposed respectively on the base-state velocity, the
average vorticity @ and the average temperature
difference . The extensive fluid away from the growing
conduction layer is motionless. If it is assumed that the
heated surface is infinite in all directions parallel to
the surface, and that entrainment to the surfaces is
prevented, for example by building side-walls in a box
shape around the perimeter of an experimental surface,
then the average velocity and average vorticity of the
base-state, as well as their derivatives, are reduced to
zZero.
Accordingly, then, equations (1), (4) and (7), are
reduced to

o4 0

$+@=0 8)
dd 0 0 o 0% a0
‘a—r‘f‘llaﬁ'vg |:a 5 + 6 :| gﬁ[ax (9)

o6 (00 o0 (60 86

a-f'u a'i‘g; +0 @4‘5
o0 %0
6x2+6 . (10)

Since the distribution of the base-state temperature
difference, §, is only a function of y (see Appendix),
the derivative of §f with respect to x is zero. The 86/dt
and 920/0y* terms were dropped from equation (10)
as a consequence of the equality that arises when
equation (4) is written in terms of average temperature
and velocities (80/0t = «,(8°0/8y%)) and recognized
as the heat conduction equation for a fluid at rest.
Equation (10) is then reduced to

6—g+‘a—é+” @Jra_é 820+i}20 (11

o “ox T dy oy ox? ‘ )
Guided by the success of previous investigations
reported by Schlichting [4], a disturbance stream func-
tion, ¥, and a temperature disturbance function, 4,
are chosen such that, for a particular disturbance
with wavelength 1 and frequency f, Y and § are
assumed to have the following forms:
¥ = $(y) exp [id(x— Cr)] 12
) = S(y) exp [id(x— Cr)]. (13)

The physical wave number 4 is related to a common
disturbance wavelength such that

g 2" 14

&= 1 (14)
Also following previous investigations, the imaginary
part of the wave number is taken to be zero. The phase
velocity, C., the real part of ¢, is defined as
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P =,

od

¢ =2 (15)

The imaginary part of C, C,, is the amplification ratio.
Since the disturbance stream function, d? satisfies

the continuity equation (8) written in terms of dis-

turbance quantities, the vorticity, @, can be expressed

as

o 05 8N

Ll Pl vl B e

(16)

By replacing #, , &, 6, and their derivatives by their
values written in terms of periodic disturbances as
defined by equations (12) and (13), and by neglecting
high-order (non-linear) terms, equations (8), (9), and
(11) are reduced to

C(¢"—~a*¢) +egp.S = g(é"”—Z&zd;"wLo?"(ﬁ) I

AG ag Iy O 228 Gt
CS—@qb_ —1E(a S—-8"). (18)
This pair of dimensional equations can be used to
describe the stability of the evolving convective flow
in the neighborhood of a suddenly heated horizontal
surface.

3. STABILITY ANALYSIS

Guided by the mathematical form of the base-state
temperature field solution, the following similarity
variable, n, is used :

_ Y
2/ (1)
Further, it follows that a characteristic length, o, a

characteristic velocity, U, and a characteristic tem-
perature, 0., are defined as

i (19)

5 = 2(%7) 0)
26

U=7 @1

6. — 2"/ () 22)

k\/n

By substituting non-dimensional variables into equa-
tions (17) and (18), the following Orr—Sommerfeld-
like, time-dependent equations result

Gr Pr?
C¢"—a2g)+e—

S=ir ("2 +o')
(23)
CS+/metfc (n)¢ = —ii;(oﬂs-s"). (24)

Two dimensionless groups, Gr and Pr, arise in equa-
tions (23) and (24), and are defined as follows:

25

Pr =, 26)

%
Here, Gr is defined in terms of the time-dependent
thickness of the boundary layer, and not as a function
of the geometrical size of the horizontal plate. The
complementary error function, erfc (1), in equation
(24) arises from the substitution of 80/dy for n = 0
(see Appendix).

Equations (23) and (24) are coupled through the S-
term of equation (23), and the system of differential
equations (23) and (24), comprises a sixth-order com-
plex-variable two-point boundary-value, eigenvalue
system. Other than the eigenfunctions ¢ and S and
their derivatives, there are Gr, Pr, a, C,, and C;, which
constitute five more parameters in real space in this
system. Since there are more unknowns than equa-
tions, values for some of these parameters can be
specified in order to determine one set of eigen-
functions of the system, equations (23) and (24), and
to compute the eigenvalues which were not specified.

Since the uniform heat flux surface is assumed to
have a very small thermal capacity, the temperature
disturbance amplitude, S, is not zero at the surface.
Rather, the first derivative of S at the surface, $'(0),
must be zero since the heat flux generated by the
surface is uniform. At the surface, where # = 0, the
velocity disturbances, u and v, in both the x- and y-
directions, must both be zero because of the no-slip
boundary condition. Clearly, at large distances from
the surface, where 5 = 1., the disturbance quantities
u, v, and @ must go to zero because the ambient is
quiescent. Therefore, the boundary conditions written
in terms of non-dimensional eigenfunctions for a uni-
form heat flux surface are

$(0) = ¢°(0) = §'(0) = ¢(e0) = ¢'(0) = S(o0) = 0.
@7

To numerically solve the stability equations and for
computational reasons, two different sets of eigen-
values can be associated with the system. The com-
putational reasons arise from the relative variation
between o and Gr. As Gr approaches its lower values,
the variation of « increases and the extrapolation of
a new o (guessed ) becomes less accurate. In this
region, where a small variation in Gr results in a
relatively high variation of «, a change in the iterative
scheme used in the computation is necessary. How-
ever, at larger Gr the opposite is true. That is, a large
variation of Gr results in a small variation of a. The
two sets are:

(1) The set which includes the non-dimensional
wave number a, the non-dimensional phase velocity
C,, and the non-dimensional degree of amplification
C.
(2) The set which includes the non-dimensional
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Table 1. The initial four iteration results

Iteration (F., F) b1 (C., C)
0 (64x10°%,82x10"%) 02244 (0.0018, 0.0)
1 (4.2x107%,52x1077) 0.2235 (5.98x107°,0.0)
2 (53x107% 54x10-%) 02229  (13x10-", 0.0)
3 (2.8x 1072, 0.0) 0.2229 0.0, 0.0)

Grashof number Gr, the non-dimensional phase vel-
ocity C,, and the non-dimensional degree of ampli-
fication C,.

The first set will be used during the computation of
the neutral stability curve at small values of Gr and
the latter set for higher values of Gr.

4, RESULTS

Due to the stiffness of the system of differential
equations (23) and (24), the determination of an ac-
curate solution was impossible using a classical finite-
difference technique of integration such as Runge—
Kutta. However, the technique of integration of
Ascher et al. [3] is especially oriented for stiff systems
such as the present one. The method is a multiple
shooting technique for two-point boundary-value
problems, but unlike other integration techniques,
where the computed results are the numerical approxi-
mations of the solutions at various nodes, in Ascher
et al’s method the computation of the solution is
carried out by a collocation which uses B-spline curve-
fits of higher order (5 and 6) at Gaussian points.
Ascher et al’s method results in a semi-analytical
solution rather than a fully numerical solution.

The integration scheme used an adaptive orthog-
onal collocation code (COLSYS). The code has been
successfully used in previous investigations dealing
with stiff differential systems which as in the study by
El-Henawy [6], COLSYS was able to solve the stiff
system of differential equations being investigated. An
acceptable initial guess was generated by using a
homotopy technique {[7] which consists of incre-
mentally shifting the equations from a state without
temperature disturbances (by eliminating the coupling
temperature term S) to the complete set of equations
(23) and (24). When temperature disturbances are
neglected, S = 0, the solution for the system of equa-
tions is

¢ = exp (—an) —exp (—Bin) (28)

where « is one of the eigenvalues and f, is defined as

B} = az—zia%. 29
An iterative scheme using a Newton—Raphson
method [8] was coupled to the integration scheme to
compute the neutral stability curve. After the four
iterative steps, which are shown in Table 1, the system
converged to the eigenvalues & = 0.2229 and C, = 0.0.

To start computation for a fluid such as water, the
other parameters were fixed at Gr = 800.0, C, = 0.0
and Pr = 6.7. Exploring the effect of Pr (for different
fluids) on the stability results was not among the
objectives of this investigation, thus the computations
were restricted to water which was the fluid used in
experiments {9] associated with this investigation.

The relative error, F, was less than 10~ %, where the
relative error is described as the ratio of ¢'(0) to ¢,,,.
It can be seen from Fig. 2 that ¢, occurs at 5 = 3.

Because of the coupling between § and ¢, and the
initial boundary conditions, in the final solution, the
real part of the S eigenfunction and its derivative, as
well as the imaginary part of the ¢ eigenfunction and
its derivative ¢’, were identically zero for all values of
n. To normalize the solution, ¢"(0) was set equal to
unity as a constant boundary condition in order to
prevent the numerical integration from converging to
the trivial solution. The stations or computational
nodes of the neutral stability curve were then com-
puted in the following manner.

The B-spline coeflicients of the eigenfunctions cor-
responding to the station (a computational node)
Gr = 800 and « = 0.2229 were used as the initial guess
for computing a neighboring station at Gr = 790.
Since the values of « for both Gr = 800 and 790 were
known, a guess of « at Gr = 780 was made by linear
extrapolation. The extrapolated guess was a = (.2268.
Using this last value of «, Gr = 780, and the B-spline
coefficients obtained with Gr = 790 as the initial guess,

Eigenvectors

a = 022295
0.
0.0
6.7
800.0

he el
-~ Y
o uow

‘l_l

F1G. 2. Eigenvector distributions for a uniform heat flux
horizontal plate at Gr = 800.0.
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Table 2. Guessed and computed eigen-

value a for Gr ranging between 800 and

290, for the upper branch of the neutral
stability curve

Gr Guessed « Computed o
410 3.25 3.140
460 333 3.400
510 3.65 3.636
560 3.84 3.851
610 4.05 4.051
660 423 4.237
710 4.39 4.411
760 4.58 4.576
810 4.70 4.731
860 4.87 4.880
910 5.02 5.021
960 5.15 5.156

the new value of o converged to 0.2268. The difference
between the guessed value and this result was of the
order of 0.0001. A sample of the guessed as well as
the computed values of o are shown in Table 2. These
values are those corresponding to the upper branch
portion of the neutral stability curve.

The extreme value, the computational node with
the smallest Gr, and that occurring at o = 1.151 and
Gr = 202.19 is the nose of the neutral stability curve.
This theoretical minimum value of Gr corresponding
to the onset of instability of the conduction layer is in
agreement with the values reported by Howard [1]
and Sparrow et al. {2]. The critical Rayleigh numbers
reported by these authors, when converted to critical
Grashof numbers for water will be of the order of 200
300. Thus the results of this mathematical formula-
tion and solving method can be perceived to be
confirmatory.

For the same previously stated computational
reasons associated with the different sets of eigen-
values, it was convenient to define three distinct parts
of the neutral stability curve which are:

(1) the lower branch computed for Gr varying from
800 to 290,

(2) the nose branch computed for o varying from
0.551t0 3.0,

(3) the upper branch computed for Gr varying from
410 to 960.

The neutral stability curve, which was obtained by
joining all the computed stations, is shown in Fig. 3.
C,, the disturbance wave propagation velocity, was
found to be identically zero during the computation
of all 55 points of the neutral stability curve. Since,
for neutral stability (C; =0) C. is the only time
coefficient in equation (12), the above finding, C,
identically zero for all stations, points toward the
presumption that the assumed oscillatory component
of the perturbation is not time dependent, at least
during the onset of instability, for the range of cal-
culations presented here (202 < Gr < 1000).

As shown in Figs. 2 and 4, only the real part of the
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=+ Computed Station
Cr=Ci=0.0
Pr=6.7

4

Wave number, o
'S ]
f

Stable Region

Unstable Region

200 400 600 800 1000
Grashof number, Gr

F1G. 3. Neutral stability curve for a uniform heat flux hori-
zontal plate showing computed stations.

vorticity disturbance, ¢, and the imaginary part of the
temperature disturbance, S, were non-zero for each
of the stations of the neutral stability curve. Based on
this result, it appears that the mathematical modelling
of the transport phenomena does not allow simul-
taneous computations of a non-zero solution for the
temperature disturbance and an imaginary non-zero
solution for the vorticity disturbance.

Some aspects of the mathematical formulation dis-
cussed in this paper were experimentally verified [9)]
for a growing horizontal thermal layer of water subject
to sudden bottom heating. The experiments were car-
ried out inside an insulated water tank containing an
instrumented heating surface. The temperatures of
both the heating surface and its adjacent water layer
were monitored. The growing layer of interest was
optically visualized using a Schlieren technique. The
quantitative measurements of some characteristics
related to the flow during its transition around the
onset of instability (the variation of both the surface
temperature and the disturbance size) were converted
to an a—Gr plane to be compared with the theoretically
obtained neutral stability curve shown on Fig. 3. Few

Eigenvectors
a= 105
Cr = 0.
Ci = 00
Pr = 6.7
GR = 202.75|
T T 77
30 40 50

-5

FiG. 4. Eigenvector distributions for a uniform heat flux
horizontal plate at Gr = 202.751.
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Wave number, o
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Unstable Region

1-
0 T T T
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Fi1G. 5. Disturbance variation during flow transition for a
heat flux of 1708 W m~2 compared to the neutral stability
curve.

of the experimental results, shown on Fig. 5, reveal the
evolution of three different disturbances (generated by
the same heat flux) during their crossing of the neutral
stability curve. These results validate the neutral stab-
ility curve portion crossed by the trajectories of the
disturbances and also suggest that the wave number
should decrease with increasing Gr as disturbances
develop from stability to instability.

5. CONCLUSION

The linear stability equations have been derived and
solved to evaluate the hydrodynamic stability of a
growing conduction layer in an extensive fluid above
a horizontal flat surface the temperature of which
arises due to a step in surface heat flux. The resulting
neutral stability curve indicates that the fluid above a
suddenly heated horizontal surface is stable for
Gr < 202.19. This minimum Grashof number com-
plies with other critical numbers reported in prior
theoretical and experimental investigations. Since C,,
the disturbance wave propagation velocity, was, from
the computation, found to be identically zero for the
entire neutral stability curve, the assumed per-
turbations which were suggested by previous theor-
etical analysis, are not time dependent during the
onset of instability for the range of Gr’s investigated
here. Experimental results, which were conducted to
validate the mathematical formulation suggest that
the wave number, «, should decrease with increasing
Gr as the neutral curve is crossed by the perturbation.
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APPENDIX. DERIVATION OF THE TIME-
DEPENDENT TEMPERATURE AT THE
SURFACE

The following mathematical solution for the time-depen-
dent temperature distribution in a semi-infinite solid (or non-
convecting fluid) with a plane subject to a uniform heat flux
was presented by Carslaw and Jaeger [10]

T, = L % exp (22
O(y’t)_ T(yat) Teo - k I:n eXp<4a,I>

y y
_ 2erfc (2\/(a,r)>:|' (AD)

The derivative of 8(¢,1) with respect to y is

B, D _ —2q”[ Y e <~y2>
oy ko L2y/(ray) 4oyt

y y y -y
aee <2\/(aﬂ)> N (4%1)} (A2

which can be reduced to

#y.1 _ ¢
vy K erfc ().

Using the chain rule, the temperature derivative with respect
tonis

(A3)

% _ 0, erfi Ad
3y = /b erfe () (A%)
where 8, is defined as
6, = 20N (A5)
kymn

The above formulation of 86/07 in equation (A4) supplies the
complementary error function, erfc, to the stability equation.
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ANALYSE DE STABILITE D'UNE COUCHE THERMIQUE HORIZONTALE SOUMISE
A UN BRUSQUE CHAUFFAGE PAR DESSOUS

Résumé—L a stabilite hydrodynamique considérée ici est formulée comme un probléme aux valeurs propres
dérivé en supposant des petites perturbations périodiques superposées 4 un état fondamental dépendant
du temps qui est la croissance continue de la couche de conduction qui résulte d’un échelon du flux
thermique en surface. Puisque le champ de flux thermique local est affine, il apparait un paramétre de
similitude sans dimension. La forme de perturbation admise est suggérée par des études antérieures de
stabilité neutre avec un extremum d Gr = 202,19, 4 = 1,151 et C, = 0,0. La vitesse d’onde de la perturbation
calculée est identiquement nulle pour la courbe entiére. Il semble que la composante oscillatoire supposée
de la perturbation ne dépend pas du temps pendant 'apparition de V'instabilité, au moins pour le domaine
202 < Gr < 1000. Les résultats expérimentaux suggérent que le nombre d’onde peut décroitre quand Gr
augmente a la traversée de la courbe neutre par la perturbation.

UNTERSUCHUNG DER STABILITAT EINER WACHSENDEN WAAGERECHTEN
THERMISCHEN SCHICHT BEI EINER PLOTZLICHEN BEHEIZUNG VON UNTEN

Zusammenfassung—Die hier betrachtete hydrodynamische Stabilitit wird in Form eines Zwei-Punkt-
Randwert Eigenwertproblems formuliert. Dieses Problem ergibt sich durch Annahme periodischer kleiner
Stérungen, die einem zeitlich verdnderlichen Grundzustand berlagert sind. Der Grundzustand ist die
ruhig anwachsende Schicht mit Wirmeleitung, die sich infolge einer plétzlichen Anderung der Ober-
flichenwirmestromdichte entwickelt. Weil die ortliche Verteilung der Wirmestromdichte dhnlich ist, ergibt
sich ein dimensionsloser Ahnlichkeitsparameter. Die angenommene Form der Stdrung wird aus fritheren
Stabilititsuntersuchungen hergeleitet. Durch Integration ergibt sich die Kurve neutraler Stabilitdt
mit einem Extremwert bei Gr = 202,19, « = 1,151 und C,=0,0. Obwohl die geforderte Form der
Stérung zeitabhiingige periodische Schwankungen zuldBt, ergeben die Berechnungen, daB die Wel-
lengeschwindigkeit der Stérung fiir die gesamte Kurve exakt gleich 0 ist. Daher wird angenommen, daB
die angenommene oszillierende Komponente der Stdrung nicht zeitabhingig ist—dies gilt fiir das Einsetzen
der Instabilitiit, wenigstens im berechneten Bereich (202 < Gr < 1000). Anders als bei Untersuchungen
mit stationdren Grundzustinden zeigen die Ergebnisse sogenannte “Trecking”-Stdrungen bei bestimmten
Frequenzen. Die experimentellen Ergebnisse zeigen dennoch, daB die Wellenzahl bei zunchmendem Gr
abnehmen sollte, falls die Neutralkurve von der Stérung gekreuzt wird.

AHAJIN3 YCTOWUYHUBOCTHU PACTYIHETO I'OPH3OHTAJIBHOI'O TEILJIOBOI'O CJ104,
MOABEPXEHHOI'O AEACTBUIO BHE3AITHOT'O HATPEBA CHHM3Y

Anmoramms—J{1% HCCACAOBaHMA [HIPORMHAMHAYECKOH YcToHuMBOCTRE (GOPMYIHpYeTcd ABYXWICHHAs
KpHBas 3a7a%a Ha cOOCTBCHHbIC 3HAYCHNS, MOTYICHHAS B IPCANONOXCHAH HAIOXKCHHS MaJibiX NCPHOIH-
HECKHX BOIMYILUECHHH Ha HECTAMMOHADHOE OCHOBHOE COCTOSHHE, B KOTOPOM HAXOZATCA HCHOABHXHBIHA
pacTyiEil KOBAYKTHBHBIE Clof, BOZHHKAIOMMH H3-32 IPAAHEHTA IUIOTHOCTH TEMJIOBOrO NOTOKA Ha
noeepxHocTH. Tak Kax noie JOKANLHBX TEIIOBHIX NOTOKOB SBJNETCA ABTOMOACTBHBIM, TO BOIMOXHO
HCMOJB30BaTh GespasmepHbil napameTp momoGms. Bun npeamonaraeMux BOIMYIIEHHH onpesenseTcs
HCC/IENOBAHMAMH YCTOHYHBOCTH, HPOBEPEHHBIMA paHee. CTPOTHE YPaBHCHEN HHTErPHPYIOTCH C UEJILIO
noNysenns. HeATpambHON KpHBOW YCTONYMBOCTH C IKCTPEMATBHEIM 3HaYCHHeM mpr Gr = 202,19,
a = 1,151 u C, = 0,0. HecMOTpA Ha To, 9TO IPH NPEANONATAEMEX BOIMYIICHHSX YIHTHBACTCH 3aBHCH-
IIiee OT BPEMCHH NepHOANieckoe konebarne, Haltieno, Y10 PacCHTaHNAR BOTHOBAN CKOPOCTH BO3MYIIe-
umit pasHa Hymo ans voel xpuBoil. Taxmm o6pazoM, npeamonaraercs, 4TO 1PE BO3HAKHOBCHHH
HeycTOfMHBOCTH KoJlebaTe bl XOMIIOHEHT BO3MYNICHHA HE 3aBACHT OT BPEMCHH N xpalinell Mepe B
pacdeTHoM puanasone (202 € Gr € 1000). B oT/HYHE OT H3BECTHOTO Uil YCTOHYMBHLIX OCHOBHBIX COC-
TOSHEH, TONy9eHHEIE Pe3y/IbTAaTH He MO3BOAMIOT OGHAPYKHTE BO3MYIIEHHH BAO/bL JAHAH NOCTORHHON
gactoThl. TeM He MeHee Ha OCHOBE HKCIIEPAMEHTAIbHLIX JAHHBIX MOXKHO NPENOJOKHAT, YTO BOJIHOBOC
9HCNO JO/DKHO YMEHBIIATHCA C POCTOM BEMYMHE! Gr, TAK Kak BO3IMYLICHHE nepedepxusaeT HeATpab-
HYIO KPHBYIO.



