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Abstract-The hydrodynamic stability considered here is formulated in terms of a two-point boundary- 
value, eigenvalue problem derived by assuming periodic small disturbances superimposed on a time- 
dependent base-state which is the quiescent growing conduction layer resulting from a step in surface heat 
flux. Since the local heat flux field is similar, a dimensionless similarity parameter arises. The assumed 
disturbance form is guided by previous stability investigations. The stiff equations are integrated to obtain 
the neutral stability curve with an extreme at Gr = 202.19, CL = 1.151, and C, = 0.0. Although the postulated 
disturbance form ahowed for time-de~ndent periodic oscillation, the computed disturbance wave velocity 
is found to be identically zero for the entire curve. Thus, it is presumed that the assumed oscillatory 
component of the perturbation is not time dependent, during the instability onset, at least for the calculated 
range (202 < Gr < 1000). Thus, unlike analyses for steady base-states, these results prohibit ‘tracking’ 
disturbances along constant frequency paths. Nevertheless, experimental results suggest that the wave 

number should decrease with increasing Gr as the neutral curve is crossed by the perturbation. 

1. INTRODUCTION 

As CONSIDERED here, the onset of instability is the start 
of the transition process from a quiescent conduction 
state to convective motion. This transition occurs 
when the motion-causing buoyancy forces which are 
produced by thermally generated density differences 
exceed the restraining viscous forces. This imbalance 
of forces, which is driven by heat generation at the 
surface, makes available an increasing amount of 
energy to naturally occurring disturbances as the con- 
duction layer thickens. Results from this analysis have 
several implications. Transient convective Aows inside 
heat exchangers during start-ups, air movements due 
to specific geo-atmospheric conditions, and behavior 
of thermally driven currents in large water bodies, are 
some of the areas where the results of this analysis 
can be used to a certain extent. 

Phenomena associated with heated horizontal fluid 
were formulated by Howard [I] in a theory explaining 
the generation of thermals as well as the quantita- 
tive prediction for the temperature field, the Nusselt 
number and the duration of the preceding conductive 
phase. Sparrow et al. [2] expe~mentally validated the 
predictions of Howard by observing the generation 
frequency of thermals. The time of onset of instability 
was determined in both investigations but, according 
to Howard the conduction layer stability problem was 
not treated because of the time-dependent basic state 

and because of the fact that the stability of a boundary 
layer at the bottom of a semi-infinite region is different 
from the ordinary case of a finite layer. 

Foster [3] analyzed the stability of a fluid layer 
cooled uniformly from above. The theoretical model 
was simpli~ed to overcome the faculties that arise 
while solving for large Rayleigh numbers. The stab- 
ility equations were formulated based on infinitesimal 
disturbances, a method commonly used in stability 
analysis of convective flows. The method considers 
the manner in which disturbances behave in the flow, 
in accordance with the appropriate conse~ation 
equations, In conventional stability theory the cri- 
terion for onset of instability is determined by finding 
the marginal state, that is, the state where infinitesimal 
disturbances just start to grow. Fourier series were 
used to solve the equations which prohibit the solving 
of the problem at large Rayleigh numbers or when the 
flow is assumed to be two-dimensional. 

The infinitesimal disturbance method has been used 
successfully in the past to mathematically model other 
flows during transition. For example, it has been used 
in many of the studies related to hydrodynamic stab- 
ility of flows in the neighborhood of vertical, hori- 
zontal, or inclined {heated or cooled) flat plates. Its 
use has been exemplified by Schlichting [4] and others. 
Consequently, this method was selected for the pres- 
ent study in order to mathematically formulate the 
hydrodynamic stability problem of a growing one- 
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NOMENCLATURE 

C, + iCi 
amplification or damping ratio 
disturbance wave propagation velocity, 

2nflm 
disturbance frequency 

relative error, $‘(O)/&,, 
gravity acceleration 
Grashof number, gjItBc6’/v2 
imaginary unit 

fluid thermal conductivity 
local static pressure 
Prandtl number, V/CL, 
surface heat flux 

temperature disturbance magnitude 
local temperature of fluid 
surface temperature 

temperature at r~ = q, 
fluid velocity in the horizontal x-direction 
(parallel to the surface) 

characteristic velocity, I%?/& 
velocity in the vertical y-direction. 

Greek symbols 
disturbance wave number, 2n/l 

thermal diffusivity, k/PC, 
thermal expansion coefficient 
characteristic length, 2J(u,r) 
similarity variable, y/6 
temperature difference, T- T, 

characteristic temperature, 2q”J(cc,z)/kJx 
perturbation wavelength 
dynamic viscosity 
fluid density 
time 
stream function disturbance magnitude 
disturbance stream function 
vorticity. aujay - au/ax. 

Superscripts 
_ 

average quantity 
dimensional quantity of fluctuation. 

J 

(a) 

Y 

FIG. 1. The coordinate systems : (a) plate facing up E = + 1 ; (b) plate facing down E = - 1 



Stability analysis of a growing horizontal thermal layer subject to sudden bottom heating 507 

dimensional conduction layer in an extensive fluid 
above a suddenly heated horizontal flat plate illus- 
trated by the top part of Fig. 1 where the shaded area 
represents the heat generating surface. This investi- 
gation is restricted to the task of determining theor- 
etically whether the disturbance is amplified or de- 
cayed for a given mean flow of an incompressible fluid 
(water). The resulting stability equations obtained 
here are limited only to the onset of instability. 

2. GOVERNING EQUATIONS 

The governing equations are the Cartesian form of 
the two-dimensional continuity, momentum, and 
energy equations which, if the Boussinesq approxi- 
mations are made, and if viscous dissipation, motion 
pressure, and volumetric energy generation effects are 
neglected, are 

aU+!!LO 
ax ay (1) 

,(~+u~+~~)= -~+,($+$) (2) 

( 

au au au 
p ~+udx+vdy 

> 

ap 
=-s 

+p 2 +$ +cg/?,e (3) 
( ) 

ae ae ae 
,+u~+v&=ut (4) 

where 

+ 1 for heated surface facing upward 
&= 

- 1 for heated surface facing downward. 

The case where E = - 1, for heated surface facing 
downward, represents a fluid heated uniformly from 
above, a naturally stable case. Conventionally, the x 
derivative of the y momentum equation is subtracted 
from the y derivative of the x momentum equation to 
eliminate the pressure terms. The result for a heated 
surface facing upward (E = 1) is 

The conventional vorticity function, w, is 

au au 

o=ay-z. 
(6) 

The definition of o expressed in equation (6) reduces 
equation (5) to 

aw am aa 
,z+u,+va= 

Y 
v~~+$]+dg. (7) 

Infinitesimal disturbances, li, 5, 6 and 8, are super- 
imposed respectively on the base-state velocity, the 
average vorticity W and the average temperature 
difference 8. The extensive fluid away from the growing 
conduction layer is motionless. If it is assumed that the 
heated surface is infinite in all directions parallel to 
the surface, and that entrainment to the surfaces is 
prevented, for example by building side-walls in a box 
shape around the perimeter of an experimental surface, 
then the average velocity and average vorticity of the 
base-state, as well as their derivatives, are reduced to 
zero. 

Accordingly, then, equations (l), (4) and (7) are 
reduced to 

Since the distribution of the base-state temperature 
difference, 8, is only a function of y (see Appendix), 
the derivative of 0 with respect to x is zero. The i%/ar 
and a28/ay2 terms were dropped from equation (10) 
as a consequence of the equality that arises when 
equation (4) is written in terms of average temperature 
and velocities (a8jaz = Cc,(a’B/ay’)) and recognized 
as the heat conduction equation for a fluid at rest. 
Equation (10) is then reduced to 

Guided by the success of previous investigations 
reported by Schlichting [4], a disturbance stream func- 
tion, I/, and a temperature disturbance function, 6, 
are chosen such that, for a particular disturbance 
with wavelength i and frequency f, $ and 0 are 
assumed to have the following forms : 

tj = d(y) exp [i&(x- &)] (12) 

8 = s(y) exp [i&(x--&)]. (13) 

The physical wave number oi is related to a common 
disturbance wavelength such that 

27l 
&=- 

I’ (14) 

Also following previous investigations, the imaginary 
part of the wave number is taken to be zero. The phase 
velocity, & the real part of e, is defined as 
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c =271f 
r 6 . 

The imaginary part of 6, Ci, is the amplification ratio. 
Since the disturbance stream function, 6, satisfies 

the continuity equation (8) written in terms of dis- 
turbance quantities, the vorticity, 6, can be expressed 
as 

ali ao a24 a$4 
(jj-_-_y-_ 

ay ax ay ax* (16) 

By replacing 6, 6, 6, 0, and their derivatives by their 
values written in terms of periodic disturbances as 
defined by equations (12) and (13), and by neglecting 
high-order (non-linear) terms, equations (8), (9) and 
(11) are reduced to 

(18) 

This pair of dimensional equations can be used to 
describe the stability of the evolving convective flow 
in the neighborhood of a suddenly heated horizontal 
surface. 

3. STABILITY ANALYSIS 

Guided by the mathematical form of the base-state 
temperature field solution, the following similarity 
variable, q, is used : 

Y 

9 = 2J(cc,z). 
(19) 

Further, it follows that a characteristic length, 6, a 
characteristic velocity, U, and a characteristic tem- 
perature, tI,, are defined as 

6 = f,,/(u,~) (20) 

(21) 

(22) 

By substituting non-dimensional variables into equa- 
tions (17) and (18), the following Orr-Sommerfeld- 
like, time-dependent equations result 

(23) 

CS+Jx erfc (~)4 = - & (aZS-S”). (24) 

Two dimensionless groups, Gr and Pr, arise in equa- 
tions (23) and (24), and are defined as follows : 

Gr = dw~3 
v2 (25) 

Here, Gr is defined in terms of the time-dependent 
thickness of the boundary layer, and not as a function 
of the geometrical size of the horizontal plate. The 
complementary error function, erfc (q), in equation 
(24) arises from the substitution of ag/jay for ‘1 = 0 
(see Appendix). 

Equations (23) and (24) are coupled through the S- 
term of equation (23), and the system of differential 
equations (23) and (24), comprises a sixth-order com- 
plex-variable two-point boundary-value, eigenvalue 
system. Other than the eigenfunctions 4 and S and 
their derivatives, there are Gr, Pr, c(, C,, and C,, which 
constitute five more parameters in real space in this 
system. Since there are more unknowns than equa- 
tions, values for some of these parameters can be 
specified in order to determine one set of eigen- 
functions of the system, equations (23) and (24) and 
to compute the eigenvalues which were not specified. 

Since the uniform heat flux surface is assumed to 
have a very small thermal capacity, the temperature 
disturbance amplitude, S, is not zero at the surface. 
Rather, the first derivative of S at the surface, s’(O), 
must be zero since the heat flux generated by the 
surface is uniform. At the surface, where 11 = 0, the 
velocity disturbances, u and ~1, in both the x- and y- 
directions, must both be zero because of the no-slip 
boundary condition. Clearly, at large distances from 
the surface, where q = v~, the disturbance quantities 
U, u, and f3 must go to zero because the ambient is 
quiescent. Therefore, the boundary conditions written 
in terms of non-dimensional eigenfunctions for a uni- 
form heat flux surface are 

4(O) = 4’(O) = s’(0) = &co) = @(co) = S(i0) = 0. 

(27) 

To numerically solve the stability equations and for 
computational reasons, two different sets of eigen- 
values can be associated with the system. The com- 
putational reasons arise from the relative variation 
between u and Cr. As Gr approaches its lower values, 
the variation of CL increases and the extrapolation of 
a new cx (guessed c() becomes less accurate. In this 
region, where a small variation in Gr results in a 
relatively high variation of tl, a change in the iterative 
scheme used in the computation is necessary. How- 
ever, at larger Gr the opposite is true. That is, a large 
variation of Gr results in a small variation of CL. The 
two sets are : 

(1) The set which includes the non-dimensional 
wave number cc, the non-dimensional phase velocity 
C,, and the non-dimensional degree of amplification 

C,. 
(2) The set which includes the non-dimensional 
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Table 1. The initial four iteration results 

SOP 

Iteration (F,, 4) ff (Cry ci) 

0 (6.4x IO-2, 8.2 x 10-3) 0.2244 (0.0018,O.O) 
I (4.2 x 10-4, 5.2 x lo-‘) 0.2235 (5.98 x lo-9,O.O) 
2 (5.3 x 10-8, 5.4 x lo-=) 0.2229 (7.3 x lo-=, 0.0) 
3 (2.8 x lo-‘, 0.0) 0.2229 (0.0,O.O) 

Grashof number Gr, the non-dimensional phase vel- 
ocity C,, and the non-dimensional degree of ampli- 
fication Ci . 

The first set will be used during the computation of 
the neutral stability curve at small values of Gr and 
the latter set for higher values of Gr. 

4. RESULTS 

Due to the stiffness of the system of differential 
equations (23) and (24), the determination of an ac- 
curate solution was impossible using a classical finite- 
difference technique of integration such as Runge- 
Kutta. However, the technique of integration of 
Ascher et al. [5] is especialiy oriented for stiff systems 
such as the present one. The method is a multiple 
shooting technique for two-point boundary-value 
problems, but unlike other integration techniques, 
where the computed results are the numerical approxi- 
mations of the solutions at various nodes, in Ascher 
et al.‘s method the computation of the solution is 
carried out by a collocation which uses B-spline curve- 
fits of higher order (5 and 6) at Gaussian points. 
Ascher et al.‘s method results in a semi-analytical 
solution rather than a fully numerical solution. 

The inte~ation scheme used an adaptive orthog- 
onal collocation code (COLSYS). The code has been 
successfully used in previous investigations dealing 
with stiff differential systems which as in the study by 
El-Henawy [6], COLSYS was able to solve the stiff 
system of differential equations being investigated. An 
acceptable initial guess was generated by using a 
homotopy technique [7l which consists of incre- 
mentally shifting the equations from a state without 
temperature disturbances (by eliminating the coupling 
temperature term s) to the complete set of equations 
(23) and (24). When temperature disturbances are 
neglected, S = 0, the solution for the system of equa- 
tions is 

4 = exp (-an)-exp (-8,~) (28) 

where a is one of the eigenvalues and fl, is defined as 

c 
/IT = a*-2ia-. 

Pr (29) 

An iterative scheme using a Newton-Raphson 
method [8] was coupled to the integration scheme to 
compute the neutral stability curve. After the four 
iterative steps, which are shown in Table 1, the system 
converged to the eigenvalues 01 = 0.2229 and C, = 0.0. 

To start computation for a fluid such as water, the 
other parameters were fixed at Gr = 800.0, Ci = 0.0 
and Pr = 6.7. Exploring the effect of Pr (for different 
fluids) on the stability results was not among the 
objectives of this investigation, thus the computations 
were restricted to water which was the fluid used in 
experiments [9] associated with this investigation. 

The relative error, F, was less than lo-‘, where the 
relative error is described as the ratio of (p’(O) to (p&. 
It can be seen from Fig. 2 that #6,, occurs at n = 3. 

Because of the coupling between S and 4, and the 
initial boundary conditions, in the final solution, the 
real part of the S eigenfunction and its derivative, as 
well as the imaginary part of the Q, eigenfunction and 
its derivative #I’, were identically zero for all values of 
q. To normalize the solution, #“‘(O) was set equal to 
unity as a constant boundary condition in order to 
prevent the numerical integration from converging to 
the trivial solution. The stations or computational 
nodes of the neutral stability curve were then com- 
puted in the foIlowing manner. 

The B-spline coefficients of the eigenfunctions cor- 
responding to the station (a computational node) 
Gr = 800 and a = 0.2229 were used as the initial guess 
for computing a neighboring station at Gr = 790. 
Since the values of a for both Gr = 800 and 790 were 
known, a guess of a at Gr = 780 was made by linear 
extrapolation, The extrapolated guess was a = 0.2268. 
Using this last value of a, Gr = 780, and the B-spline 
coefficients obtained with Gr = 790 as the initial guess, 

a w 0.22295 

Pr = 6.7 
Gr = 800.0 

0 

5 'SiXSO 

FIG. 2. Eigenvector distributions for a uniform heat flux 
horizontal plate at Gr = 800.0. 
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Table 2. Guessed and computed eigen- 
value a for Gr ranging between 800 and 
290, for the upper branch of the neutral 

stability curve 

Gr Guessed G( Computed LX 

410 3.25 3.140 
460 3.33 3.400 
510 3.65 3.636 
560 3.84 3.851 
610 4.05 4.05 1 
660 4.23 4.237 
710 4.39 4.411 
760 4.58 4.516 
810 4.70 4.731 
860 4.87 4.880 
910 5.02 5.021 
960 5.15 5.156 

Unstable Region 

O-( 
- -__ 

200 400 

FIG. 3. Neutral stability curve for a uniform heat flux hori- 
zontal plate showing computed stations. 

the new value of CI converged to 0.2268. The difference 
between the guessed value and this result was of the 
order of 0.0001. A sample of the guessed as well as 
the computed values of CI are shown in Table 2. These 
values are those corresponding to the upper branch 
portion of the neutral stability curve. 

The extreme value, the computational node with 
the smallest Gr, and that occurring at tl = 1.151 and 
Gr = 202.19 is the nose of the neutral stability curve. 
This theoretical minimum value of Gr corresponding 
to the onset of instability of the conduction layer is in 
agreement with the values reported by Howard [l] 
and Sparrow et al. [2]. The critical Rayleigh numbers 
reported by these authors, when converted to critical 
Grashof numbers for water will be of the order of 20& 
300. Thus the results of this mathematical formula- 
tion and solving method can be perceived to be 
confirmatory. 

vorticity disturbance, $J, and the imaginary part of the 
temperature disturbance, S, were non-zero for each 
of the stations of the neutral stability curve. Based on 
this result, it appears that the mathematical modelling 
of the transport phenomena does not allow simul- 
taneous computations of a non-zero solution for the 
temperature disturbance and an imaginary non-zero 
solution for the vorticity disturbance. 

For the same previously stated computational 
reasons associated with the different sets of eigen- 
values, it was convenient to define three distinct parts 
of the neutral stability curve which are : 

Some aspects of the mathematical formulation dis- 
cussed in this paper were experimentally verified [9] 
for a growing horizontal thermal layer of water subject 
to sudden bottom heating. The experiments were car- 
ried out inside an insulated water tank containing an 
instrumented heating surface. The temperatures of 
both the heating surface and its adjacent water layer 
were monitored. The growing layer of interest was 
optically visualized using a Schlieren technique. The 
quantitative measurements of some characteristics 
related to the flow during its transition around the 
onset of instability (the variation of both the surface 
temperature and the disturbance size) were converted 
to an cr-Gr plane to be compared with the theoretically 
obtained neutral stability curve shown on Fig. 3. Few 

(1) the lower branch computed for Gr varying from 
800 to 290, 

(2) the nose branch computed for tl varying from 
0.55 to 3.0, 

(3) the upper branch computed for Gr varying from 
410 to 960. 

The neutral stability curve, which was obtained by 
joining all the computed stations, is shown in Fig. 3. 
C,, the disturbance wave propagation velocity, was 
found to be identically zero during the computation 
of all 55 points of the neutral stability curve. Since, 
for neutral stability (C, = 0) C, is the only time 
coefficient in equation (12), the above finding, C, 
identically zero for all stations, points toward the 
presumption that the assumed oscillatory component 
of the perturbation is not time dependent, at least 
during the onset of instability, for the range of cal- 
culations presented here (202 < Gr < 1000). 

As shown in Figs. 2 and 4, only the real part of the 

-! 
600 

Eigenvectors 
a = 1.05 
Cr = 0. 
Ci = 0.0 
Pr = 6.7 
GR = 202.751 

FIG. 4. Eigenvector distributions for a uniform heat flux 
horizontal plate at Gr = 202.75 1. 
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I 
200 400 600 1000 

Graslt%umber, Gr 

FIG. 5. Disturbance variation during flow transition for a 
heat flux of 1708 W me2 compared to the neutral stability 

curve. 

of the experimental results, shown on Fig. 5, reveal the 
evolution of three different disturbances (generated by 
the same heat flux) during their crossing of the neutral 
stability curve. These results validate the neutral stab- 
ility curve portion crossed by the trajectories of the 
disturbances and also suggest that the wave number 
should decrease with increasing Gr as disturbances 
develop from stability to instability. 

5. CONCLUSION 

The linear stability equations have been derived and 
solved to evaluate the hydrodynamic stability of a 
growing conduction layer in an extensive fluid above 
a horizontal flat surface the temperature of which 
arises due to a step in surface heat flux. The resulting 
neutral stability curve indicates that the fluid above a 
suddenly heated horizontal surface is stable for 
Gr < 202.19. This minimum Grashof number com- 
plies with other critical numbers reported in prior 
theoretical and experimental investigations. Since C,, 
the disturbance wave propagation velocity, was, from 
the computation, found to be identically zero for the 
entire neutral stability curve, the assumed per- 
turbations which were suggested by previous theor- 
etical analysis, are not time dependent during the 
onset of instability for the range of Gr’s investigated 
here. Experimental results, which were conducted to 
validate the mathematical formulation suggest that 
the wave number, GL, should decrease with increasing 
Gr as the neutral curve is crossed by the perturbation. 

REFERENCES 

1. L. N. Howard, Convection at high Rayleigh numbers, 
Proc. Eleventh Int. Congress on Applied Mechanics 
(Edited by H. G8rtler). Springer, Berlin (1966). 

2. E. M. Sparrow, R. B. Husar and R. J. Goldstein, Obser- 

vations and other characteristics of thermals, J. Fluid 
Mech. 41,793-901 (1970). 

3. T. D. Foster, Stability of a homogeneous fluid cooled 
uniformly from above, Physics Fluia!s 8, 124%1257 
(1965). 

4. H. Schlichting, Boundary Layer Theory (7th Edn), pp. 
447488. McGraw-Hill, New York (1979). 

5. U. Ascher, J. Christiansen and R. D. Russell, COLSKS 
-A Collocation Code for Boundary-value Problems. 
Codes for Boundary-value Problems in Ordinary Differ- 
ential Equations (Edited by G. Goos and J. Hartmanis), 
Lecture Notes in Computer Science 76, pp. 164-185 

6. 

7. 

8. 

9. 

10. 

(1978). 
I. M. El-Henawy, Multiple steady states of buoyancy 
induced flows in cold water, Ph.D. thesis, State Univer- 
sity of New York, Buffalo, New York (1981). 
H. Hamouda, Transport and hydrodynamic stability of 
an extensive fluid suddenly heated from below, Ph.D. 
thesis, State University ofNew York, Buffalo, New York 
(1985). 
C. A. Heiber and B. Gebhart, Stability of vertical natural 
convection boundary layers : some numerical solutions, 
J. Fluid Mech. 48,625-646 (1971). 
H. Hamouda and J. C. Mollendorf, Stability exper- 
imental investigation of a growing horizontal thermal 
layer subject to sudden bottom heating, Exp. Thermal 
Fluid Sci. (submitted). 
H. S. Carslaw and J. C. Jaeger, Conduction of Heat 
in Solids (2nd Edn), p. 75. Oxford University Press, 
London (1959). 

APPENDIX. DERIVATION OF THE TIME- 
DEPENDENT TEMPERATURE AT THE 

SURFACE 

The following mathematical solution for the time-depen- 
dent temperature distribution in a semi-infinite solid (or non- 
convecting fluid) with a plane subject to a uniform heat flux 
was presented by Carslaw and Jaeger [lo] 

0(y,r) = T(y,T)-T, =gpfexp($) 

The derivative of 0( t, z) with respect to y is 

1 (Al) 

(A2) 

which can be reduced to 

aed 11 
ay - -%erfc(q). (A3) 

Using the chain rule, the temperature derivative with respect 
to q is 

E = - Jz& erfc (q) 

where 0, is defined as 

e = %"J@v) 
c 

kJn 

The above formulation of %/all in equation (A4) supplies the 
complementary error function, erfc, to the stability equation. 
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ANALYSE DE STABILITE D’UNE COUCHE THERMIQUE HORIZONTALE SOUMISE 
A UN BRUSQUE CHAUFFAGE PAR DESSOUS 

R&sum&-La stabilitk hydrodynatnique considkke ici est formulke comme un probltme aux valeurs propres 
dtrivk en supposant des petiles perturbations pkriodiques superpoies $ un &tat fondamental d&pendant 
du temps qui est la croissance continue de la couche de conduction qui r&suite d’un &.cheIon du flux 
thermique en surface. Puisque le champ de flux thermique local est affine, iI apparait un param&re de 
similitude sans dimension. La forme de perturbation admise est suggtrie par des itudes antkrieures de 
stabilitk neutre avec un extremum B Gr = 202,19,x = I, 15 I et C, = 0,O. La vitesse d’onde de la perturbation 
calculite est identiquement nulle pour la courbe entikre. II semble que la composante oscillatoire supposke 
de la perturbation ne depend pas du temps pendant I’apparition de I’instabilit8, au moins pour le domaine 
202 < Gr < 1000. Les ri?sultats expkrimentaux suggPrent que le nombre d’onde peut dkcroitre quand Gr 

au~ente B la traver&e de la courbe neutre par la per~ur~tion. 

UNTERSUCHUNG DER STABILITAT EINER WACHSENDEN WAAGERECHTEN 
THERMISCHEN SCHICHT BEI EINER PLOTZLICHEN BEHEIZUNG VON UNTEN 

Z~ammenfa~ung-Die hier betrachtete hydrodyn~ische Stabilitlt wird in Form eines Zwei-Punkt- 
Randwert Eigenwe~problems formuliert. Dieses Problem ergibt sich durch Annahme period&her kleiner 
Stiirungen, die einem zeitlich vergnderlichen Grundzustand iiberlagert sind. Der Grundzustand ist die 
ruhig anwachsende Schicht mit Wrirmeleitung, die sich infolge einer plijtzlichen Anderung der Ober- 
fllchenwPrmestromdichte entwickelt. Weil die iirtliche Verteilung der Wlrmestromdichte ihnlich ist, ergibt 
sich ein dimensionsloser lihnlichkeitsparameter. Die angenommene Form der Starung wird aus friiheren 
Stabilitiitsuntersuchungen hergeleitet. Durch Integration ergibt sich die Kurve neutraler Slabilit5t 
mit einem Extremwert bei Gr = 202,t9, tc = 1,151 und C, = 0,O. Obwohl die geforderte Form der 
St~rung zeitabh~ngige periodische Sch~~ankungen zul&Bt, ergeben die Berechnungen, daB die Wel- 
lengeschwindigkeit der Stiirung fiir die gesamte Kurve exakt gleich 0 ist. Daher wird angenommen, daB 
die angenommene oszillierende Komponente der Stiirung nicht zeitabhgngig ist-dies gilt fiir das Einsetzen 
der Instabilitlt, wenigstens im berechneten Bereich (202 $ Gr 4 1000). Anders als bci Untersuchungen 
mit stationlren Grundzustlnden zeigen die Ergebnisse sogenannte “Trecking’‘-StGrungen bei bestimmten 
Frequenzen. Die experimentellen Ergebnisse zeigen dennoch, da13 die Wellenzahl bei zunehmendem Gr 

abnehmen sollte, falls die Neutralkurve von der Stijrung gekreuzt wird. 

AHAJIIl3 YcTOtr9WmkI PA-ET0 I-OPki3OHTAJIbHOl-0 TElUIOBOrO CJIOll, 
IIOflBEmHHOrO AEflCTBMK) BHE3Al-IHOT0 HAI-l’EBA CHkI3Y 

neycro%iklBocr8 rone6aTeJIb!lb& xoh5roaeaT ao3MyoL(cHi%a ae 3aBBcwr 0T apexem 110 xpa&zeti bfepe B 
pacgemo~ mamuone (202 < Gr g 1ooO). B ownvuxe OT u3~oro &an ycrotiblx OCAO~ cot- 
~od,nonflemwe pe3ynbram He no3wxunoT o6HapyIm ao3hiyweHsd4 rsnonb ns5dh nocrontmol 

wxoxw. TeMrreMeriee Ha~oBe3xcnqBMeHTaxbifl &W"MXMOXHO~~~OffOXl,Tb,~OBi,~OBOe 

wxo~on*oroysse~albcncpocr0M BemmARbl Gt, ~axc ltalc BO3hiyIUeHHe uepewpxunacr AeWpanb- 

HP W~wo‘ 


